

### A COMPUTATIONAL EVALUATION OF VARIOUS BRACING TECHNIQUES FOR WIND-LOADING TELECOMMUNICATION TOWERS USING STAAD PRO V8I

#### <sup>1</sup>Racha Konda Dhanalakshmi, <sup>2</sup>Dharavath Durga Bai, <sup>3</sup>Dr. Vvvs Murthy, <sup>4</sup>Midde Govardhan <sup>3</sup>Professor,<sup>1,2</sup>assistant Professor, <sup>4</sup>student, <sup>1,2,3,4</sup>department Of Civil Engineering, Siddhartha Institute Of Engineering And Technology, Hyderabad, India.

#### ABSTRACT

In today's telecommunications business, communication towers are extremely important for the transmission of data and information. Self-supporting lattice towers are the most popular type of telecommunications construction in use today. These towers are exposed to some of the most extreme weather conditions, including strong winds, earthquakes, etc. As one lattice tower design may be utilized for the building of several towers, greater emphasis might be placed on the study and design of these structures while also taking into account economic factors. By comparing deflection under operational wind load and the necessary quantity of steel, this research sought to identify the tower's optimal bracing arrangement in terms of strength and cost. The tower considered was a four-legged steel lattice tower with different types of bracing such as K, V, X and Y were to be compared. The elevation of the tower was taken as 24 m. Towers were analyzed and designed using Staad Pro V8i software as per IS 800-2007. The section used in designing was the angle section. The loads which were considered were dead load, live load, and wind load which was calculated as per IS 875-2015 Part 1 (Dead Load), IS 875-2015 Part 2 (Imposed Load) and IS 875-2015 Part 3 (Wind Load).

Keywords: lattice tower, bracing, Staad Pro V8i, self-supporting tower, telecommunication

#### 1. INTRODUCTION

The telecommunications sector is growing at a phenomenal rate in the current era of technological growth. During the last several years, the sector has experienced substantial expansion related to telecommunications projects, which has resulted in the building of many towers to expand the coverage area and network compliance. These towers are crucial to wireless communication networks, hence the collapse of such a building in a catastrophe poses a serious risk. It has been demonstrated in several instances that wind is the primary reason for tower failure. During storms and hurricanes, wind speeds may quickly exceed intended wind speeds. Such a powerful breeze may easily cause physical damage to the structure and this could place a huge economic burden on the organization. Therefore, additional importance should be given to considering all possible adverse conditions for the analysis and design of these towers. Also, recent developments in communications engineering have presented construction engineers with a challenge to the economically viable design of telecommunication towers. Communication towers are usually space frames composed of Pins made of metal parts to hold transmitters and receivers. In addition, earthquake loads are important in the design of these towers. In particular, the metal lattice-type tower, which may be a three-legged lattice tower or a four-legged steel tower, is widely used in the world to support mobile antennas and microwaves because they are ideal for high altitude conditions. Metal lattice towers are usually constructed using the main leg angles and binding elements. The members are assembled together, either directly or by gusset plates. In order to reduce unsupported lengths and thus increase their binding strength, the main legs, and the intermediate support elements are supported between their end nodes, using bracing. Since a single extended tower design can be used for hundreds of

### **JNAO** Vol. 14, Issue. 01: 2023

towers for power transfer and communication purposes, it is very important to find a cost-effective and efficient design. In this project work, a 24 m tall lattice tower is considered and a variety of bracing systems such as K, V, X, and Y are considered the project aims to compare four-legged communication towers with each other. Towers are analyzed and designed using STADD Pro as per IS 800 - 2007, The dead load, the living load, and the wind load operating on the tower are calculated according to the corresponding IS code ie, IS 875-2015 Part 1 (dead load), IS 875-2015 Part 2 (imposed load) and IS 875-2015 Part 3 (Wind load). From this work, it can be concluded that at a certain height of the four-legged communication tower how different types of bracing systems affect the strength, performance, and economy of the tower. The project also aims to determine the best type of bracing system that can provide the most efficient bracing system.

# 2. PROBLEM STATEMENT

The telecommunication industry has become the backbone of the country without which there would have trouble in all the day-to-day processes which are now on the internet ecosystem. In this sector a major role for the transfer of data and information is done with the help of telecommunication towers only so to facilitate the economy during the construction of tower there is a need to find out a bracing pattern which is economical as well as good in taking load

## 3. OBJECTIVE OF WORK

• Generate 3D models of a telecommunication tower using STAAD Pro software to carry out analysis and design.

• Study dead load, live load, and wind load acting on the telecommunication tower as per the respective IS code.

• Study the effects of loads on the various bracing systems by analyzing the displacement profile of the tower.

• Determine the most efficient bracing system.

### 4. METHODOLOGY

In Methodology, all the important aspect and procedures performed during the analysis and design of the tower are included:

It includes the following:

- a) Specification of Tower and Material
- b) Load Calculation
- c) Modeling of Tower on STAAD Pro
- d) Analysis and Design of Tower
- 4.1 Specification of Tower and Material
- Height of Tower: 24 m
- Top Width of Tower: 1.2 m
- Bottom Width of Tower: 4 m
- Site Selected: Pune

• Communication Equipment and Antenna considered: GSM-1 Antenna (2500 mm \* 250 mm \* 150 mm), GSM-2 Antenna (1500mm \* 170 mm \* 150 mm) and Microwave Antenna circular (600 mm, diameter = 80 mm)

- Types of Bracings considered: K, V, X, Y
- Type of sections: Angular Section
- Support Condition: Fixed.
- Material used: Steel
- Modulus of Elasticity of steel (Es): 200 GPa
- Poisson's ratio (µs) :0.3
- Density of steel (γsteel): 77 kN/m3 (7.850 kg/m3)
- Yield strength of steel (fy): 415 M Pa



Figure 1: Elevation of Tower and Types of Bracing



Figure 2: Orientation of Antenna

4.2 Load Calculation

The load combinations considered for the study are:

For the Limit State of Collapse

- 1) 1.5 (Dead Load + Live Load)
- 2) 1.5 (Dead Load + Wind Load in X Direction
- 3) 1.5 (Dead Load + Wind Load in Diagonal Direction)
- For the Limit State of Serviceability
- 1) Dead Load + Live Load
- 2) Dead Load + Wind Load in X Direction
- 3) Dead Load + Wind Load in Diagonal Direction
- 4) Dead Load + Operational Wind Load in X Direction

5) Dead Load + Operational Wind Load in Diagonal Direction The calculation of loads is as follows:

a) Dead Load:

The dead loads acting on the structure include the self-weight of the structural elements like bracings and loads of antennas and other equipment used.

For the Study, the types of antennae which has been considered are:

| Sr.<br>No. | Description                     | No | Length<br>(mm) | Width<br>(mm) | Thickness<br>(mm) | Weight<br>(kg) | Total<br>Weight<br>(kg) |
|------------|---------------------------------|----|----------------|---------------|-------------------|----------------|-------------------------|
| 1          | GSM1 Antenna                    | 3  | 2500           | 250           | 150               | 25             | 75                      |
| 2          | GSM2 Antenna                    | 6  | 1500           | 170           | 150               | 20             | 120                     |
| 3          | Microwave Antenna<br>(circular) | 4  | 600            |               | •                 | 30             | 120                     |

**JNAO** Vol. 14, Issue. 01: 2023 Table 1: Calculation of Dead Load

Total Weight of all equipment's = 75 + 120 + 120 = 315 kg

= 3150 N

= 3.150 kN

b) Live Load or Imposed Load:

Live or imposed loads include the weight of the technicians along with his equipment which is required during maintenance.

The Live considered for this study:

Live Load or Imposed Load = 100 kg

= 1000 N

= 1 kN

c) Wind Load:

The wind load on the tower can be calculated using the Indian standards IS 875 (Part3) 1987. For the study, the region selected in Pune.

Step1: To calculate design wind pressure Design Wind Speed = Vz = K1 \* K2 \* K3 \* Vb Risk Coefficient (K1) = 0.92 for 25 years

Terrain Factor (K2) = 1.10 for 24 m and class B of terrain category 2 Topography Factor (K3) = 1 for the given plain topography

Basic Wind Speed (Vb) = 39 m/s for Pune region Vz=0.92 \* 1.10 \* 1 \* 39 = 39.468 m/s

Design wind pressure = Pz = 0.6 \* Vz2 = 1.218 kN/m2

Step2: To calculate wind load on antenna

Wind load on Antenna

= Force Coefficient (Cf) \* Design Wind Pressure (Vz) \* Area of Exposed Surface Where, Force Coefficient (Cf) can be calculated from IS 875 - 2015 (Part 3) clause

6.3.2.1 figure 6 and table 20

| Sr.<br>No. | Descriptio<br>n                        | Lengt<br>h<br>(mm) | Wid<br>th<br>(m<br>m) | Thickne<br>ss<br>(mm) | Cf  | Area<br>(sq.m) | Vz<br>(kN/<br>m <sup>2</sup> ) | Wind<br>Force<br>(kN) |
|------------|----------------------------------------|--------------------|-----------------------|-----------------------|-----|----------------|--------------------------------|-----------------------|
| 1          | GSM1<br>Antenna                        | 2500               | 25<br>0               | 150                   | 1.8 | 0.625          | 1.21<br>8                      | 1.193                 |
| 2          | GSM2<br>Antenna                        | 1500               | 17<br>0               | 150                   | 1.7 | 0.255          | 1.21<br>8                      | 0.460                 |
| 3          | Microwa<br>ve<br>Antenna<br>(circular) | 600                | 1                     | 2                     | 1.2 | 0.285          | 1.21<br>8                      | 0.360                 |

Table 2: Calculation of Wind Load

Step3: To calculate wind load on tower members Wind load on Tower Members 227 **JNAO** Vol. 14, Issue. 01: 2023 = Force Coefficient (Cf) \* Design Wind Pressure (Pz) \* Area of Exposed Surface Where, Force Coefficient (Cf) can be calculated from IS 875 – 2015 (Part 3) clause 6.3.3.4(a)

For K bracing,

Wind Load on Members,

ISA 110 x 110 x 8 = 0.272 kN / m

ISA 80 x 80 x 12 = 0.198 kN/ m

For V bracing,

Wind Load on Members,

ISA 110 x 110 x 8 = 0.272 kN / m

ISA 80 x 80 x 12 = 0.198 kN/ m

For X bracing,

Wind Load on Members,

ISA 110 x 110 x 8 = 0.231 kN / m

ISA 80 x 80 x 12 = 0.168 kN/ m

For Y bracing,

Wind Load on Members,

ISA 110 x 110 x 8 = 0.260 kN / m

ISA 80 x 80 x 12 = 0.189 kN/m

Step 4: To calculate the operational design wind pressure

Operational wind load is calculated for checking the deflection of the tower at operation wind speed as it will be subjected to this load for most of its design period.

Operation Design Wind Speed = Vz = K1 \* K2 \* K3 \* Vo Risk Coefficient (K1) = 0.92 for 25 years Terrain Factor (K2) = 1.10 for 24 m and class B of terrain category 2 Topography Factor (K3) = 1 for the given plain topography Operational Wind Speed (Vo) = (2/3) \* 39 m/s

= 26 m/s

Vz= 0.92 \* 1.10 \* 1 \* 26 = 39.468 m/s

Operational Design Wind Pressure = Pz = 0.6 \* Vz2 = 0.415 kN/m2 Step 5: To calculate operational wind load on antenna Operational Wind Load on Antenna

= Force Coefficient (Cf) \* Operational Design Wind Pressure (Pz) \* Area of Exposed Surface

| Sr.<br>No. | Description                        | Length<br>(mm) | Width<br>(mm) | Thickness<br>(mm) | <u>Cf</u> | Area<br>(sq.m<br>) | Vz<br>(kN/m²) | Operational<br>Wind<br>Force<br>(kN) |
|------------|------------------------------------|----------------|---------------|-------------------|-----------|--------------------|---------------|--------------------------------------|
| 1          | GSM1<br>Antenna                    | 2500           | 250           | 150               | 1.8       | 0.625              | 0.415         | 0.466                                |
| 2          | GSM2<br>Antenna                    | 1500           | 170           | 150               | 1.7       | 0.255              | 0.415         | 0.179                                |
| 3          | Microwave<br>Antenna<br>(circular) | 600            |               | -                 | 1.2       | 0.285              | 0.415         | 0.141                                |

 Table 3: Calculation of Operational Wind Load

Step3: To calculate operational wind load on tower members

Operational Wind load on Tower Members

= Force Coefficient (Cf) \* Operational Design Wind Pressure (Pz) \* Area of Exposed Surface For K bracing, Operational Wind Load on Members, ISA 110 x 110 x 8 = 0.120 kN / m ISA 80 x 80 x 12 = 0.087 kN/ m For V bracing, Operational Wind Load on Members, ISA 110 x 110 x 8 = 0.120 kN / m 228

ISA 80 x 80 x 12 = 0.087 kN/ m For X bracing, Operational Wind Load on Members, ISA 110 x 110 x 8 = 0.115 kN / m ISA 80 x 80 x 12 = 0.084 kN/ m For Y bracing, Operational Wind Load on Members, ISA 110 x 110 x 8 = 0.102 kN / m ISA 80 x 80 x 12 = 0.874 kN/ m Modeling of Tower on STAAD Pro

The model will be created using the coordinate data for the points and the element connectivity table and suitable cross-sectional properties are to be assigned to the elements created. The boundary condition is to be stimulated in the model by fixing the four lowermost nodes of the modeled structure. The loads calculated above are to be applied at appropriate nodes and the stress parameters, and deformation of the structure under the effect of the applied load is to be studied.

The models of towers are as shown below in the figures:



Fig 3: Modeling of Towers (K,V, X, Y)

### 4.3 Analysis and Design of Tower

The lattice tower model was analysed in STAAD Pro V8i software. The models which were created using the coordinate data for the points and the element connectivity table is analyzed on various loading condition on STAAD Pro. The loads calculated above are applied at appropriate nodes and the stress parameters, and deformation of the structure under the effect of the applied load is studied.f



Fig 4: Analysis of Towers on STAAD Pro

Suitable steel sections are initially assumed as members of the tower for analyzing the structure. Once the analysis is done members are finalized based on the developing in them, following the codal provisions provided by Indian Standards. 229

- The maximum allowable stresses in the members are given in IS 802 (Part-1).
- Limiting slenderness ratios for members are given in IS 802(Part-1).
- o Allowable Slenderness Ratio for Tension Member = 400
- o Allowable Slenderness Ratio for Compression Member = 180 stresses
- Effective Length of compression members should be assumed as per IS 806(1968).

| fall time thelp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|-------------------------------------|---|
| A II II K?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
| 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                | F INAJORFURIO  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11          | AY = 5.   | .3 1    |                                     | - |
| NC113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IDEALOW IDDE * 1 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.8 S      | AZ = 5.   | 3. 1    |                                     |   |
| 712. If any Paint diaphrages is pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 28-802 * 000   |                | and a second sec | and then    | ey = 25.  | (#.) (* |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. C.S.          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | #2 = 3D.  | .5.1    |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | LENGTH CHE-    | 1.20>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | HY = 3.   | -X (    |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | H2 = 1.   | 3 1     |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARAMETER        | BOLTIME        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PTRESSED. |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IIM NEWS 104     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | IN NEWT   | 10011   |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ********       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 L/R-T = 29.2   | BOLT CIA       | + 12 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | FA = 201  | 5.7 1   |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 5/8-5 = 77.4   | 805.2 73.8     | * 24.66 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | fa = 0    | 0.4 1   |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 85/8 = 17.4    | 8 BOLT         | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | FYS = 434 | 6.0 1   |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 PYLS = 250.6   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | PY8 = 211 | P.0 1   |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 GALVA = 0.0    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | 22.1    |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 = 1.0         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | 1       |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 189 - 1.0      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RLA = 1.0        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 807 - 1.0      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | 1       |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *********** | ********* | ****    |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | *1      |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.               | DESIGN MINE    | NUME ( RE-MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | .*)       |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | *1      |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (* BEFULT/       | CRITICAL CONE/ | BAT20/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCAD199     | £.        | *1      |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 11             | MY             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50088309    |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -         |         |                                     |   |
| and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 24.94          | COMPRESSION.   | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |           |         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2.44 0         | 0.4            | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00        |           |         |                                     |   |
| and the second s |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         | And the second second second second |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |         | Total Page - 857 RdDA               |   |

Fig 5: Report of Design on STAAD Pro

For comparison purposes, the members which are selected by analyzing the effects of load on the towers were the same for all the towers to get fair information about deflection and other parameters. After analysis and design on Staad Pro the following members were selected:

- Main Legs (4 Numbers): ISA 110 x 100 x 8
- Bracing: ISA 80 x 80 x 12

# 5. RESULTS AND DISCUSSION

After completion of load allocation and designing, analysis is carried out only for the zone of basic wind speed of 39m/s. The combination of self-weight, antenna load, live load, and wind load is taken for the analysis of models. The displacement profile of the tower is calculated for a load combination of wind load operational wind speed in X-direction and diagonal direction is considered along with the dead load. The graph of deflection along X- direction, Y-direction, and Z-direction concerning the height of the tower are plotted for all the bracing systems along with this graph of resultant displacement concerning the height of the tower is also plotted and the amount of steel required for each type of bracing system is determined and compared.

5.1 Analysis and comparison of Resultant Deflection for all braced towers at Operational Wind Speed

Load condition 1: Dead Load + Operational Wind Load in X-Direction

The graph below shows the resultant deflection at various elevation levels for all the bracing system:



Fig 6: Deflection vs Height of Tower Graph at Operation Wind Speed in X- direction

http://doi.org/10.36893/JNAO.2023.V14I1.0223-0231

230

### JNAO Vol. 14, Issue. 01: 2023

Load condition 2: Dead Load + Operational Wind Load in Diagonal Direction The table below shows the resultant deflection at various elevation levels for all the bracing system:





# 5.2 Determination of Steel Quantity

The total amount of steel required to fully complete the structure is worked out by using the software STAAD Pro. The amount of steel used is represented in the below graph:

Fig 7: Comparison between Steel Quantities for Different Bracing

## CONCLUSION

The following specific conclusions can be reached based on research conducted in a variety of ways:

• From the comparison made in case of dead load+ wind load in X-direction load condition it can be concluded that X- bracing system produced minimum deflection at the top which is about 21.220 mm followed by K-bracing, Y-bracing and V-bracing which are producing a deflection of 24.440 mm, 24.675 mm and 28.909 mm.

• In the given case, X-bracing has 15% less deflection as compared to K-bracing, followed by 16% less deflection as compared to Y-bracing and 41% less deflection compared to V-bracing

• Comparison made in case of dead load + wind load in diagonal direction load condition it can be concluded that X- bracing system is again produced minimum deflection at the top which is about 20.621 mm followed by K-bracing, Y-bracing and V- bracing which are producing a deflection of 23.625 mm, 24,193 mm and 27.754 mm.

• From the given case again, X-bracing has 15% less deflection as compared to K-bracing, again 17% less deflection as compared to Y-bracing and 35% less deflection compared to V-bracing

• From the comparison in case of amount of steel required it can be concluded that K- bracing requires 5.009 tonnes of steel followed by V-bracing, X-bracing and Y-bracing which require 5.076 tonnes, 5.629 tonnes and 6.541 tonnes.

• From all the above points it can be concluded that K-bracing is the most suitable type of bracing for design of telecommunication tower.

# REFERENCES

1. Yusuf M. Hashim, TasiuAshiruSulaiman, Yusuf Yau, Philip Ayodele Balogun, "Optimization and Design of Telecommunication Tower Subjected to Dynamic and Static Loading" ISSN: 2449 – 0539 BAYERO JOURNAL OF ENGINEERING AND TECHNOLOGY (BJET) VOL.15 NO.1, JANUARY, 2020

2. Konda Kishna, Dr. M. D. Subhan, "Analysis and Design of Telecommunication Lattice Tower with Antennas using STAAD Pro". IJRECE VOL. 6 ISSUE 4 (OCTOBER-

a. DECEMBER 2018) ISSN: 2393-9028 ISSN: 2348-2281

3. Dimitrios V. Bilionis, DimitriosVamvatsikos, "Wind Performance Assessment of Telecommunication Towers: A Case Study in Greece"COMPDYN 2019 7th ECCOMAS Thematic

Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.) Crete, Greece, 24–26 June

4. Shwetha Shetty M R, Anusha M, Ashwini A, Rajiv T, "Dynamic Analysis Of 4-Legged Steel Telecommunication Tower"International Journal of Civil Engineering and Technology (IJCIET)Volume 10, Issue 01, January 2019

5. Keshav Sharma, S. K. Duggal, Deepak Kumar Singh, A. K. Sachan, "Comparative Analysis of Steel Telecommunication Tower Subjected to Seismic and Wind Load" Civil Engineering and Urban Planning: An International Journal (CiVEJ) Vol.2, No.3,

a. September 2015

6. Joyson Silva P, Dhilip Kumar R G, Binu Sukumar, Ram Shankar P, "Effect of Wind and Earthquake Loading on Telecommunication Tower" International Journal of Innovative Technology and Exploring Engineering (IJITEE)ISSN: 2278-3075, Volume-9 Issue-1S,

a. November 2019

7. Abdulaqder M. Tah, Kamiran M. Alsilevanai, Mustafa Ozakca, "Comparison of Various Bracing Systems for Self-Supporting Steel Lattice Structure Tower"American Journal of Civil EngineeringVolume 5, Issue 2, March 2017

8. C. Borri, M. Beth & P. Biagini, "Wind Effects on Large Antennas and Telecommunication Towers: Analysis and Design of Main Components and Joints" Chapter 336 Accesses Part of the NATO Science Series book series (NAII,volume 4)

9. Harika Pahanindranath, "Selection of Suitable Bracing System for A Communication Tower at Various Wind Zone" IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 09, 2017

10.P. Markandeya Raju, M Pavan Kumar, "Parameter Comparison of Communication Tower<br/>with Different Bracin"International Journal of Civil Engineering and Technology (IJCIET) Volume<br/>8, Issue 10, October 2017